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Sequence alignment is one of the most important bioinformatics tools for modern molecular biology. The
statistical characterization of gapped alignment scores has been a long-standing problem in sequence alignment
research. Using a variant of the directed path in random media model, we investigate the score statistics of
global sequence alignment taking into account, in particular, the compositional bias of the sequences com-
pared. Such statistics are used to distinguish accidental similarity due to compositional similarity from bio-
logically significant similarity. To accommodate the compositional bias, we introduce an extra parameter p
indicating the probability for positive matching scores to occur. When p is small, a high scoring alignment
obviously cannot come from compositional similarity. When p is large, the highest scoring point within a
global alignment tends to be close to the end of both sequences, in which case we say the system percolates.
By applying finite-size scaling theory on percolating probability functions of various sizes (sequence lengths),
the critical p at infinite size is obtained. For alignment of length 7, the fact that the score fluctuation grows as
xt'? is confirmed upon investigating the scaling form of the alignment score. Using the Kolmogorov-Smirnov
statistics test, we show that the random variable y, if properly scaled, follows the Tracy-Widom distributions:
Gaussian orthogonal ensemble for p slightly larger than p. and Gaussian unitary ensemble for larger p.
Although these results deepen our understanding of the distribution of alignment scores, the use of these results
in practical applications remains somewhat heuristic and needs to be further developed. Nevertheless, the
possibility of characterizing score statistics for modest system size (sequence lengths), via proper reparametri-

zation of alignment scores, is illustrated.
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I. INTRODUCTION

Seemingly different subjects may share similar underlying
mathematical structure. Realization and investigation of such
an occurrence often lead to progress in one or both subjects.
For example, the recognition and elaboration of the close
relationship between the directed polymers/paths in random
media (DPRM) problem [1-4] in statistical physics and the
score statistics of sequence alignment in bioinformatics has
led to fruitful results [5—14]. Recently, it was found [15] that
compositional divergence between two related sequences
may hinder the detection of their homology. Fortunately, for
both global alignment and local alignment this problem can
be solved quite effectively [15,16] through deriving a self-
consistent scoring scheme. On the other hand, compositional
similarity among unrelated sequences may lead to accidental
similarity identifications [17]. This will contaminate the sta-
tistics and may weaken the efficacy of iterative database
search methods such as PSI-BLAST [18]. A rationale was pro-
posed and implemented [17] to improve the accuracy of local
alignment score statistics. In this paper we study the corre-
sponding problem in global alignment statistics via a differ-
ent route: by studying a variant DPRM model that is also
related to the percolation problem.

The DPRM problem is one of the best studied systems
with quenched disorder. In a d+1 dimensional DPRM sys-
tem, there are d regular spatial dimensions and one timelike
dimension that is singled out to specify the elongated direc-
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tion of the path. The displacement made by the DP, when
projected onto the timelike direction, is often identified as
the length of the DP. Due to the presence of the quenched
disorder, the system’s free energy depends on the particular
realization of the disorder involved. And it is the probability
distribution function (pdf) of the free energy that character-
izes the statistical properties of the system.

Sequence alignment, on the other hand, is one of the most
powerful tools in modern molecular biology. Computer-
assisted sequence alignment has become increasingly impor-
tant due to the rapid growth of DNA and protein databases.
The use of sequence alignment ranges from identifying the
possible functionality of newly sequenced DNA and protein
to the construction of phylogenetic trees [19-21]. Under se-
quence alignment, the relatedness of two sequences com-
pared is quantified by an alignment score and its associated E
value. The latter is the expected number of random hits with
the same or even higher score from a given database, and
thus provides a meaningful measure of homology detected.
Dividing the E value by the database size, one obtains a
database independent measure.

Unfortunately, rigorous results relating such database-
independent measures to alignment parameters (or scoring
function) exist only for gapless alignment, which is less sen-
sitive in detecting distant homology. Concerted efforts
[7-14] utilizing the connection to DPRM have been made to
better characterize the score statistics of gapped local align-
ment, a popular tool to find between two sequences the most
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homologous segments, one from each sequence. The quanti-
fication of the score statistics of local alignment is also ap-
proached by employing a more effective sampling method
[22], and by computing one of the Gumbel parameters [23]
based on a special scoring scheme where the match score is
a constant and the mismatch score is twice the gap cost [24].

Despite its straightforward relation to the 141 dimen-
sional DPRM problem, the score statistics of gapped global
alignment have not yet attracted appropriate attention until
recently. When cast in the language of DPRM, global align-
ment score statistics may be regarded as the (free) energy
distribution of the 1+1 dimensional DPRM system with the
alignment score identified as the negative of the (free) en-
ergy. In 1+1 dimensions, the free energy (or score) of a
directed path of length ¢ traversing a random potential energy
landscape is known [2] to have free energy

F(t) ~ —vt — '3 (1)

[or S(¢) ~vt+xt'*] with —v being the average free energy
per unit length and y being a random variable. Although the
exponent 1/3 has been known for several decades [25], the
distribution of the random variable y was determined only
recently.

By mapping the so-called polynuclear growth (PNG)
model to the strong coupling regime (zero temperature limit)
of the DPRM and to the longest increasing subsequence
(LIS) problem, Priihofer and Spohn [26] pointed out that the
probability distribution of the length € from the LIS can be
used to characterize the pdf of x in the DRPM problem. In
fact, there are three different subclasses [26—29], each with a
different pdf(y) resulting from different boundary and initial
conditions, that all exhibit the same free energy exponent
1/3. This more detailed information will allow for better
statistical characterization of gapped global alignment scores
of uncorrelated random sequence pairs, once one identifies
correctly the corresponding boundary condition in PNG for
the version of the DPRM mapped from the sequence align-
ment problem.

Assuming that each of the ¢ characters in an alphabet
occurs with equal probability 1/c¢ and by combining several
existing results [26,27,30,31] and a change of coordinates,
Majumdar and Nechaev [32] obtained the asymptotic y dis-
tribution for the longest common subsequence (LCS) be-
tween two character sequences compared. The pdf of y
found in Ref. [32] is one the subclasses obtainable from PNG
with a specific boundary condition. The LCS can be inter-
preted as the global alignment score under a special scoring
scheme where the matching score for two identical charac-
ters is 1 and the mismatched character pair has a score twice
the gap penalty. Generalization to characters with unequal
background frequencies, a more general scoring scheme, and
accommodation of compositional bias, nevertheless, remains
a challenging task and deserves a detailed study.

In this study, we do not impose constraints between gap
costs and substitution score. We investigate whether or not
other subclasses of pdf of y obtainable from PNG can be
realized in our model of gapped global alignment. To mimic
different levels of the compositional bias, we further restrict
the proportion of occurrences of a favorable (negative) ran-

PHYSICAL REVIEW E 72, 061917 (2005)

2t

VN Pairing

> oAnn
[aRV.V.VIs
RV VA=
Q Ann-d
[V Vo]

— Gap

b: - =G C

FIG. 1. An example of global alignment between sequences a
and b.

dom potential to be p (see next section for more detail).
When the two sequences compared have very dissimilar
compositions, the chance for a large alignment score is much
smaller than for the case when both sequences have similar
compositions. A large p mimics high compositional similar-
ity. When p is small, it is expected that v becomes negative
and the alignment score will decrease with length. The scal-
ing behavior of the score near the transition from v <0 to
v >0 is also verified and studied. The critical p, p,, is defined
as the p value that gives rise to v=0. Note, however, that this
p. is expected to be very different from the p, in the standard
directed percolation problem [33,34]. This is because, upon
increasing p from zero, the condition v=0 occurs much ear-
lier before the energetically favorable bonds percolate.

This paper is organized as follows. In the next section, we
define the parameter p and establish notation. In the third
section, we shall review some previous works that are related
to the current study. In the fourth section, the numerics and
the associated analysis will be detailed. In particular, the
scaling of average score, dependence of p. on the gap pen-
alty, and a general analysis of the energy distribution will be
presented. Although some details will be shown in this sec-
tion, technical details will be relegated to the Appendix. A
summary and some concluding remarks constitute the last
section.

II. GLOBAL ALIGNMENT AND THE DPRM

In this section, we will introduce the parameter p to ac-
commodate compositional bias, give a brief introduction to
global alignment and the algorithm for global alignment, and
finally describe the variant DPRM model that we abstract
from the alignment algorithm. For simplicity, throughout this
study, we use only a linear gap cost (see below).

Sequence alignment can be used to identify homology
between protein or DNA sequences. An alignment between
two sequences a and b is given in Fig. 1. In this particular
example, both sequences contain seven characters.
a=[AACGTTG] while b=[AGGCTGG]. We will use the no-
tation a; (b;) to refer to the ith (jth) character of sequence a
(b). Thus ajy is C, bs is T, etc.

The quality of an alignment is usually quantified by the
associated alignment score, which is the sum of pairwise
substitution scores s(a;,b;) and gap penalties Y(iy,if|jo.js)-
Here s(a;,b;) denotes the pairwise substitution score when
we pair up character a; from sequence a with the character b;
from sequence b. Because of its dependence on two charac-
ters (indices), a set of substitution scores is often called a
substitution matrix. A gap is formed when a character from
one sequence is not paired with any character from the other
sequence, and the function (i, i f| Jo»Jy) returns the gap pen-
alty when the substrings (of consecutive characters)
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[aigers--- ,a,-f] and [b) i, ... ,b-f] are not paired with charac-
ters from their respective countersequences. Apparently, the
case ip=i; (or jo=j,) indicates that the substring
[aigers--- ,aif] (or [Dj 415 ’bjf]) contains no characters.

It is a common practice to use the term scoring function to
denote the combination of the substitution matrix and the gap
penalty function used for sequence alignment. Under a given
scoring function, the associated alignment score of the ex-
ample in Fig. 1 will be s(A,A)—y(1,3|1,2)+s(G,G)
-¥(4,4|3,4)+s(T,T)+s(T,G)+s(G,G), which consists of
five pairwise substitution scores and two gap penalties. Al-
though there are many possible alignments, corresponding to
different arrangements of gaps and substitutions, between
two sequences, one usually refers to the alignment with high-
est alignment score as the optimal alignment and its associ-
ated score as the alignment score. The alignment example
above is termed global alignment since the two sequences (a
and b) are aligned from head to toe.

The scoring function used in sequence alignment is often
designed by experienced biologists. Different substitution
matrices are designed for capturing different types of simi-
larity (or evolutionary distances). The gap penalty function
can have many variants. In this study, however, we will only
focus on the linear gap function:

Wiosifdjo-jp) = Lig+jp—io = jol9. (2)
The parameter 6 is the penalty per unmatched character
(gap).

In the following, we will define the parameter p that ac-
commodates the presence of compositional bias, and de-
scribe briefly the Needleman-Wunsch [35] algorithm for glo-
bal alignment and the corresponding DPRM problem.
Because the PNG model maps to the zero temperature
DPRM problem, we will describe only the optimal alignment
algorithm and zero temperature DPRM. The generalization
to finite temperature is straightforward and can be found in
Ref. [13].

A. Compositional bias and score statistics

The null model assumed in the study of alignment score
statistics plays an important role in statistical significance
assessment of similarity found between two sequences. One
of the most frequently employed null models is the one point
random Markov sequence model. Here a sequence
a=[a,,a,, ... ,ay], with its constituent letters a; drawn from
an alphabet (), is assumed to exist with probability

M
Py(a) =1 f(a), (3)
i=1

where f(a) is the background frequency of character a and
Ea caf (d) =1.

The basic idea here is to use the standard composition
{f(a)} as an estimate of the typical character frequencies in a
typical sequence. A useful quantity to consider is the average
substitution score in a null model,
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In order to suppress noise, it is a common practice to require
that (s),<<0. As we will elaborate later, another useful pa-
rameter is the ratio

>, s(a.b)f(@)f(b)
>, s@b)f@)fb) + 2 [s(a.b)|f(a)f(b)

where =*) means only sum over entries with positive
(negative) s(a,b). Consider generating infinitely many letter
pairs according to {f(a)}. The numerator in Eq. (4) can be
regarded as the area of the histogram with positive scores,
while the denominator can be regarded as the total area of
the histograms of all scores. In a coarse-grained view, one
may regard the positive score as uniformly distributed be-
tween zero and one with probability of occurrence p and the
negative score as uniformly distributed between —1 and 0
with probability 1-p. Aside from its analog to sequence
alignment problem, a potential distribution of this sort, albeit
in discrete form, has been been used [33,34] in studying the
relation between DPRM and directed percolation. Appar-
ently, for (s);<<0, one must have p<1/2. However, it is
possible that two sequences compared are of very similar
composition and/or share the same rare amino acids so that
the corresponding p can be larger than 1/2. We therefore
allow p in the range 0 <p <1 to accommodate all possibili-
ties.

A compositional bias among two sequences (or from
standard composition) occurs when the sequences compared
exhibit character compositions significantly different from
one another [or from {f(a)}]. Let a=[a,,a,,...] and
b=[b,,b,,...] be two character sequences with their charac-
ters a; and b; taken from (). Let us call C,y,)(a) the compo-
sition frequency of character a in sequence a(b). In a similar
fashion to Eq. (4), one may define a corresponding ratio for
the sequence pair a and b,

2, 5(a,b)Cy(a)Cy(b)
3!, s(@.b)Co(@)Cyb) + 2, [s(a.b)| Cala) Cy(b)

Pry=

Pap=

If pap>prs (Pap< pf’f), then the alignment score between
two unrelated sequences (a,b) will on average have higher
(lower) score than expected from a background model as-
suming a standard composition {f(a)}. As one possible way
to accommodate such biases, we propose that the back-
ground score statistics be studied under different values of p.

B. Algorithms

Let a=[a,,a,,...,ay]) and b=[by,b,,...,by] be two se-
quences of lengths M and N, respectively, with elements a;
and b; taken from the alphabet (). Under a given scoring
function, i.e., a substitution matrix and a gap function, the
Needleman-Wunsch algorithm [35] optimizes global align-
ment by using the dynamic programming method (or the
transfer matrix method in statistical physics).
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For clarity, we introduce the alignment lattice in Fig. 2
with sequence a laid along the x direction and sequence b
laid along the y direction. Note that the alignment example
given in Fig. 1 is shown as a (directed) path in the alignment
lattice. In fact, each alignment is represented by a unique
path and vice versa.

Define the auxiliary quantity S,, , that records the highest
global alignment score for alignment paths starting at the
origin (0, 0) and terminating at point (m,n). It is not hard to
see that for the linear gap case the auxiliary quantity S, ,
obeys the following recursion relation:

S Sm—l,n—l + S(am’bn) (5)
m,n — MaA P
’ ) Sm—l,n - 5’ Sm,n—l -0

with the “boundary conditions”
SO,nBO =-ndé and SmBO,O =-—md. (6)

The alignment score is typically identified as S, y and the
associated optimal alignment is obtained by the trace-back
method [19]. However, in this study we will use a different
definition of score (see below).

C. Variant DPRM

The recursion (5), in fact, is a commonly used approach in
statistical physics, i.e., the transfer matrix method. In particu-
lar, it is very similar to the transfer matrix used to tackle the
zero temperature DPRM problem in 1+1 dimensions. For a
detailed review of the DPRM problem, readers are referred
to Ref. [4] and references therein. In a 1+1 dimensional
DPRM system, each lattice point is labeled by two discrete
indices, x and ¢ for space and time, respectively.

To illustrate the connection between DPRM and the se-
quence alignment problem, we focus on the following vari-
ant of DPRM. Using the coordinates defined by x=m-n,
t=m+n, as shown in Fig. 2, a directed path A starting from
the origin (x=0, t=0) can be regarded as the “world line” of
a particle in one dimension. For a given realization of ran-
domness, a random potential u(x,7) is assigned to the bond
connecting lattice points (x,z+1) and (x,7—1). There is also
a constant elastic penalty associated with each bending of
the path, e.g., going from (x,7) to (x—1,7+1) instead of to
(x,1+2).

t=m+n
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FIG. 2. The alignment lattice. Upon laying
sequence a along the horizontal axes and se-
quence b along the vertical axes, we note that the
directed path here uniquely represents the align-
ment shown in Fig. 1. The new coordinate system
(x=m-n, t=m+n) is also shown to illustrate the
connection between the recursion relation (5)
used in sequence alignment and the correspond-
ing one (7) used in DPRM.

At zero temperature, the free energy is the energy of the

lowest energy path. Writing the elastic energy as &, one can
write down easily the transfer matrix for finding the lowest
energy path and its associated energy via the following re-
cursion:

E(x,t—=2)+u(x,t—1)
E(x,/) =min) E(x- 1,t—= 1)+ . (7)
Ex+1,0—-1)+ 6
The lowest energy at time 7 is then given by

min E(x,T). (8)

Using x=m—n and t=m+n, we can rewrite the recursion (5)
in terms of x and ¢

S(x,t=2) +s(x,t=1)
S(x,t) =max{S(x-1,t1—1)-6 9)
Sx+1,0-1)=6

with s(a,,,b,) rewritten as s(x,z—1). The reason we did not
write s(a,,,b,) as s(x,t) comes from the observation that the
letter pair (a,,,b,) is located at (m—1/2, n—1/2), not (m,n),
on the alignment lattice (see Fig. 2). Note that if one defines
S(x,f)=-E(x,1), then the above recursion is turned into

E(x,t=2)=s(x,t-1)
E(x,t)=min\E(x—1,t—=1)+ 6 ) (10)
Ex+1,-1)+6

Therefore the negative of the substitution score plays the role
of the potential and the gap cost plays the role of elastic
energy.

In our variant model, we take the coarse view from the
first subsection and assume that the random potential u(x,?)
[or —s(a,,,b,)] is uncorrelated [36] and follows the form

[-1,0), with probability p
u(x,t) = ) . (11)
[0,1),  with probability (1 - p)
Instead of taking the score at the upper-right corner of the
lattice in Fig. 2, we look for the maximum score within the
alignment lattice,
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max{S(x,r)} or max{S(a,,b,)}.
Xt m,n

For a given square lattice of size L, we call the system per-
colated when the lowest-energy (highest-score) point occurs
within L from the top wall or the right wall, i.e., when the
max score point has either its m or n coordinate in the range
[L-\L,L][37].

III. RELEVANT TECHNICAL BACKGROUND

Because the maximum height in PNG model can be un-
derstood as the LIS of a permutation of N numbers, statistical
characterization of the latter can be applied to the former. It
is known that in the limit of large N, the LIS of a given
permutation has length €,=2\N with probability one [40].
Baik et al. [27] recently showed that the fluctuations with
respect to the mean value 2\N are of the form ¥N'/® and that
the distribution of the random variable Y is characterized by
Prob(Y<x)=Fgyg(x), with Fgyg(x) being the Tracy-Widom
distribution [41] for the Gaussian Unitary Ensemble. The
Tracy-Widom distribution Fgyg(x), being the distribution of
the largest eigenvalue of complex Hermitian matrices, is in-
timately related to the Painlevé II equation

o =2u’ + xu. (12)

This equation admits a globally positive solution with the
following asymptotics:

u(x) ~ Ai(x) for x — o,

[—x
u(x) ~ 7 for x — — o0,

where Ai(x) is the airy function of first kind satisfying
U —xu=0

and is related to the modified Bessel function via
Ai(x)=\x/37°K, /3(_%)63/ 2). The result of Baik e al. then states
that

€N - 2 \"%
Nl/6

lim Prob(;’{ $x> =Fguelx) Vx eR,

N—x
and the Tracy-Widom distribution Fgyg(x) is related to u(x)
via

Fgug(x) = eXpl— f (s— x)uz(S)dS] = exp[-g(x)],

with g"(x)=u’(x) and g(x) —0 as x— .

When translating this result into the context of PNG [26],
the value N represents the number of nucleation events. Fig-
ure 3 illustrates a PNG (with eight nucelation events) and its
associated permutation. If one assumes the nucleation events
have uniform density, the number of nucleation events will
follow a Poisson distribution, have mean (N) proportional to
the lattice area 12/4, and have a maximum height identified
as €. Because the maximum height corresponds to the nega-
tive of the energy of the lowest energy path of DPRM and
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FIG. 3. An example of a polynuclear growth event and
its corresponding permutation. A region of height 4 is labeled
by & in a circle. A nucleation point i, labeled by its projection
on the m axis, will have a different (permuted) label 7r(i) on
the n axis. Therefore the sequence [1,2,3,4,5,6,7,8] is
permuted into  [w(1),m(2),7(3),m(4),m(5),m(6),m(7),m(8)]
=[5,2,8,3,7,1,4,6] with LIS [2,3,4,6] of length 4, the maximum
height of the PNG profile.

because t= N2, we know that the coefficient y, with appro-
priate scale, also follows Fgyg, the Tracy-Widom distribu-
tion for complex Hermitian matrices.

A similar analysis can also be carried out for cases where
a flat interface is used as a starting point. In this case, the
mapping from PNG to permutation will result in an addi-
tional symmetry [26]. This additional symmetry, which was
considered by Baik and Rains [28], leads to the prediction
that the appropriately scaled random variable y should fol-
low Fgog(x), the Tracy-Widom distribution for the Gaussian
orthogonal ensemble. As expected, the distribution Fgop(x)
is closely related to Fgyp(x):

Fop() = [Faue(x)]"? exp[- f(x)/2] (13)

with f(x)= [ u(s)ds.

Baik and Rains [29] further investigated the case where
nucleation events can also happen on the boundary of the
lattice. Denote the horizontal axes in Fig. 3 by E, and the
vertical axes by E_, one then calls a, ) the linear nucleation
density along E, ). Let o’ denote the bulk nucleation event

density, the results most revelant to the DPRM are a, = «, for
which

lim Prob

t—®©

—2
(52 % sx) SFo).  (14)

with L(7) identified as h(y27) in the PNG [26]. This new
limiting distribution Fy(x) due to Baik and Rains has not yet
been identified with any eigenvalue distribution from random
matrices [42]. Tt should be noted that Fy(x) is also closely
related to the Tracy-Widom distribution Fgyg(x). In fact, one
has

Fo(x) =[1=(x+2f"+2g")g"lexp[- (g +2)].  (15)

As interpreted by Prihofer and Spohn [26], this distribution
corresponds to stationary growth.
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In the following section, we will analyze which of the
three possible distribution functions—Fgyg(x), Fgog(x), or
Fo(x)—is the correct one for the random variable y in the
context of global alignment.

IV. NUMERICS AND ANALYSIS

For the practical use of global alignment, there is little use
to keep aligning two sequences if the alignment score de-
creases with ¢. Therefore, in our variant model, we look for
max,, {S(a,,,b,)} instead of just taking the value of
S(ay;,by). The alignment score may steadily decrease with
length aligned when severe compositional biases are present.
In principle, such a situation may be alleviated by the com-
positional adjustment of the scoring matrix [15,16]. How-
ever, after the compositional adjustment of the scoring ma-
trix, if the global alignment score still keeps decreasing with
length, the two sequences compared cannot be homologous.

In our numerical studies, we first determine for every
L X L lattice the critical concentration p.(L) of favorable po-
tentials at which the highest score path percolates in the ma-
jority of simulations. Recall that the system is deemed to
have a percolated path if the highest score point within the
lattice_has either its m or n coordinate within the range
[L—+L,L] [37]. The finite size effect is studied in detail in
order to extract p, at inifinite size. However, note that the
value of p.(L—»)=p, does depend on the gap penalty &
used. Taking p close to p, and studying the scaling of the
ensemble-averaged score, we investigate the relation be-
tween v, the average score gain per length, and |[p—p.|. We
also identify this relation’s systematic dependence on . We
then investigate the distribution of the random variable x
when p>p,_, followed by an attempt to characterize the glo-
bal alignment score statistics at finite sizes. The following
subsections are organized according to the order of our study.

A. From finite-size scaling to p,

To determine p.(L— ), we first determine p (L) for fi-
nite L and then extrapolate by assuming that finite-size scal-
ing holds. For an inifinite system near criticality, character-
ized by some intensive variable 7T near the critical value 7.,
the only relevant length is the correlation length ¢ that di-
verges as g.|T—T.|™” when approaching the critical point 7,
from above (+) or below (—). Usually, the prefactors g, and
g_ are not identical. The finite-size effect sets in when &
grows to be comparable to the system size L. The observ-
ables, such as susceptibilities, that diverge as £ can now
only have maximum L%". Therefore the observables will
have a finite-size scaling form &Y"A(LY"/&/")=|T
T |7%f(LV"|T-T.,|) with asymptotics

I ifx>1

16
x4 ifx<1 (16)

Further, because there cannot be a true singularity when the
system size is finite, the physical observables must be con-
tinuous across 7T,. This then requires (T-T,) %f,(x—0)
=(T.-T)"%f_(x—0), which comes out of Eq. (16) naturally.
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One may then define a new scaling function H(x) such that
H(x>0)=f,(x), Hx<0)=f_(-x), and H(x) is continuous at
x=0.

For a percolating system, £~ g.|p—p.|™" and the argument
of the general scaling function H can be written as L'"(p
-p.). Given a finite lattice of size LX L, there is a finite
chance, due to statistical fluctuations, for the system to per-
colate even when p<p.. Similarly, there is also a finite
chance for system to remain unpercolated even if p>p.. We
define the probability for system to percolate under a given p
and L by II(p,L). While I1(p,L) is a smooth function of p
for finite L, I1(p,L— ) will develop into a step function
with value zero for p <p. and value 1 for p>p, . The finite-
size scaling idea suggests that one may write II(p,L) as
[ (p-p)L""]. As L gets larger, we expect that the width of
IT gets smaller.

We define p.(L) by the following integral:

11
pu(L) = f p(j—p)dp, (17)

which simply means that we calculate the average p
weighted by dIl/dp, a distribution approaching 8(p-p,)
when L—oo. Since II(p,L) can be directly measured by
Monte Carlo simulations, one can obtain p.(L) unambigu-
ously with a large enough number of simulations.

Because dll/dp=L""T1"[(p-p.)L""] with
[I1"(z) =dll(z)/dz], we find, when combining with Eq. (17),
that

pL)=p.= f [(p—pJL"" M’ [(p - pIL""1dp

=L‘1/szH’(z)dz0<L_”” (18)

provided that I1’(z) is not a symmetric function of z. In the
extremely rare case that I1’(z) is symmetric around z, p.(L)
will approach p,. even faster. To find simultaneously v and p,.
using Eq. (18), however, requires elaborate trials.

To avoid this tedious procedure, we follow a well-known
method, as described in Ref. [43], to compute the width A(L)
of I(p,L) via

dll
AP= f [p—pc(L)]2<d—)dp- (19)
D
Upon writing

[p _pc(L)]2 = (p _pc)2 + 2[pc _pc(L)](p _pc) + [pc _pc(L)]2
(20)

and making a simple change of variable to L""(p—p,) in
place of p on the right-hand side of Eq. (19), one finds that

A(L) ~ L7, (21)

since every one of the three terms on the right-hand side of
Eq. (20) is of order O(L™?'"). Therefore one has
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TABLE I. The values of the width of I1(p), the effective p,, and
the location of the maximum of d(S)/dp for various system sizes
but with gap penalty fixed at =0.4. Plotting A(L) against p.(L)
allows one to determine p.=p.(L— =), as shown in Fig. 4. The
average of the maximum score, elaborated in Sec. IV B, exhibits a
weak finite-size effect, and the maximum of its first derivative with
respect to p is close to p.(L).

o L A(L) pc(L) p|max d(S)ldp
0.4 100 0.0252 0.136 0.138
0.4 200 0.0188 0.128 0.135
0.4 300 0.0161 0.125 0.129
0.4 400 0.0147 0.123 0.127
0.4 500 0.0132 0.121 0.124
0.4 600 0.0123 0.120 0.121

When plotting p.(L) as the ordinate and A(L) as the abscissa,
one should observe a straight line and the intercept at the y
axis should be p.. We use this method to compute p..

Note that p.(L) does depend on the value of & used. For
each size in L=[100,200,300,400,500,600], the quantiy
I1(p,L) is obtained by using 250 000 realizations of random
potentials and then by taking the ratio of (# percolated)/
250 000. Computing I1(p,L) from p=0 to p=1 (with incre-
ment 0.0048 in p) and using Eq. (17), we deterimine p (L)
and A(L) for the & value investigated. This procedure is used
for each 6{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8}. As an ex-
ample, we show in Table I the p.(L) and A(L) values for
different L when 6=0.4. Figure 4 then illustrates how we use
Eq. (22) to obtain p, for 6=0.4. Using p,. obtained from Fig.
4, we plot In[p.(L)—p,.] against In(L) in Fig. 5 to show that it
is indeed straightforward to extract the exponent v once p,. is
determined via Eq. (22). The dependence of v on & is docu-
mented in Table II. When repeating these procedures for all &
of interest, we obtain the & dependence of p. which is also
documented in Table II.

B. Scaling of the average of the best score

At p=p,, v (the average score gain per length) is zero.
When p is near p,, we assume that v~ +|p—p,_|”. This as-

0.150

0.140

0.130

<p>

0.120

0.110

0.100
0.000 0.010 0.020 0.030

A

FIG. 4. (Color online) The extrapolation method for obtaining
p. In this example, the gap penalty is 6=0.4 and the p, obtained is
0.107.
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FIG. 5. (Color online) The determination of exponent v: using
the p. value obtained from Fig. 4 [or equivalently Eq. (22)], one
may then use Eq. (21) to obtain the exponent v from the inverse of
the slope of In[p.(L)—p.] vs In(L).

sumption will be verified in this section by scaling analysis
of the averaged maximum score.

When translating our understanding of the DPRM to glo-
bal alignment, the score fluctuations for alignment of length
t are proportional to ' while the average score (over many
realizations) is expected to be vz. Right at the critical point
v=0, we expect the best scoring path of length ¢ to have
alignment score a(8)t'? with the positive constant a(5) de-
pending on the gap penalty. Near the critical point, the sys-
tem cannot quite tell whether it is right at the critical point or
not. For p<p, and |p—p.| <1, the best score will keep grow-
ing as a(&)¢'? until the linear term —|p—p "t becomes of
comparable size. This defines a saturation of the score for the
p <p. side. Basically, the two quantities become comparable
at t,,

t.=[a(d)|p-p | T, (23)

and at this point the best score is expected to saturate at |p
—p/™"%a**(8). When t<t1,, the system behaves as if it were
still at the critical point, but realizes that it is below p. when
t>t.. Therefore it is the ratio L/t. that constitutes the argu-

TABLE II. The values of plyax &2S1dp?» Pes Vs and vy for different
gap penalties &. Because the exponent v is obtained from the in-
verse value of a slope that itself sensitively depends on the p. value
used, the estimated error bar for v is the largest. The standard error
for each value in the second and third columns is estimated to be
+0.002, while the standard error for each value in the last column is
estimated to be +0.004.

o p‘max d2S/dp? Pc v Y
0.1 0.014 0.015 2.03+0.25 0.750
0.2 0.043 0.044 2.34+0.25 0.775
0.3 0.076 0.074 2.65+0.25 0.800
0.4 0.107 0.107 2.58+0.25 0.825
0.5 0.135 0.136 2.55+0.25 0.850
0.6 0.164 0.162 2.56+0.25 0.875
0.7 0.186 0.183 2.82+0.25 0.900
0.8 0.204 0.205 2.50+0.25 0.925
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FIG. 6. (Color online) A typical data collapse for (S) of various
sizes based on the scaling function proposed. The positive abscissa
indicates the quantity L(p—p_.)3??; the negative abscissa records
—L(p,—p)*”?. The gap penalty §is 0.4. By varying the exponent 7,
we find the best y to be around 0.825.

ment of the scaling function for the averaged score (for p
<po):

(SY=p=p " (L*p-p.)), (24)

with f_(x<1)=a(8)x”? and f_(x>1)=constant due to the
score saturation.

Similarly, when p>p,_ and |p—p. <1, the linear growth
term vt becomes dominant only for #>¢. and the score still
behaves as if the system were at criticality for r<t.. There-
fore for p>p,

(SY=lp=p " (L p-p.)), (25)

with f,(x<1)=a(8)x”? and f,(x>1)=x>"2. If we define
f(x>0)=f.(x) and f(x<0)=f_(-x), then

($)=1|p - pJ "L (p - p.)). (26)

The scaling of (S) is verified by data collapse using data
from many different sizes. Figure 6 shows a typical example
of our many data collapse results, each with high quality
collapse. The & dependence of 7y is documented in Table II.
The trend that y increases with & can be understood intu-
itively. The larger the & value, the harder it penalizes the gap
and the harder it is for high scoring segments to connect
through gaps. Consequently, v is expected to vanish faster
near p,.

Apparently, one may regard 7.(p) as the correlation length
that diverges near p, as |p—p.|>”2. However, t(p) is not the
same as the correlation length & (the cluster size) that we
defined for the percolating probability II(p,L). This is be-
cause when ¢<t,, the previous analysis assumes that the
score keeps increasing as t'?. The cluster we defined for
percolation, however, may start with one such segment of
increasing score, then connect to a bad region where the
score slowly decreases, then connect to a segment of increas-
ing score, etc. Therefore our percolation cluster size &(p) at a
given p is in general larger than 7.(p). The first consequence
expected from this argument is that the exponent v should be
larger than 3vy/2 for all 6. As shown in Table II, this is
indeed the case.
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Further, because &(p)>1.(p), the finite size effect be-
comes more severe when using II(p,L) as opposed to using
(S);. Near critical p, the susceptibility d*(S)/dp> should
show a peak near p.. When numerically computing this sus-
ceptibility, we find that for lattice sizes 300 and larger, there
is virtually no difference in terms of peak locations. In Table
II, we document the peak location of the susceptibility for
various & in the column headed by plnax &2s/ap?- The very
small difference between the peak location of the suscepti-
bility and the p, obtained using Eq. (22) supports the con-
clusion that using (S) leads to a smaller finite-size effect.
Another interesting phenomenon, as exemplified in Table I,
is that the p value where the maximum of d{S),/dp occurs
agrees reasonably well with p.(L) obtained using Eq. (17).

C. Score fluctuations for p >p,

Through the numerically verified scaling of the score,
elaborated in the previous subsection, we confirmed that the
global alignment of length 7 will have score fluctuations
xt"3, and obtained systematically the dependence on & of the
exponent 7. In this section, we will examine the probability
distribution of the random variable y. Although Pridhofer and
Spohn [26] have described for the DPRM three different sub-
classes that are all consistent with the 7!/? score fluctuations,
a more detailed study is needed in order to confirm whether
any of these three universality subclasses can be applied to
the global alignment model we investigated. In order to get
the theoretical curves for the three known subclasses, we
need the solution u(x) to the Painlevé II equation (12). Be-
cause of the nonlinearity, the numerical stability range is
very small. We therefore have to perform an asymptotic
analysis and use it to obtain an initial value of high enough
accuracy to provide a stable solution. The asymptotics are
derived in detail in the Appendix.

For a given & and a p that is greater than p.(J),
N=1000000 realizations of the random potential are in-
dexed by i. We may rewrite Sy, (t=m+n)=vt+xt'""> with
their explicit label:

Smax;i=vti+Xitz!/3~ (27)

Note that if our xy were to follow Fgyug or Fgog, it would
have a nonzero average. This point has to be taken into ac-
count explicitly when trying to decide which subclass best
fits our random variable Y.

Let us first start with the assumption that our y variable,
after transforming to a proper scale, follows either Fgyg or
Fgog- Apparently, we have to find out both the scale N and
try to single out the value y; for each event i. This is possible
because, aside from the average value, the second moment is
known for both Fgur and Fgog. We can therefore form a
scale independent ratio

_ 0 _ 0D -0?
x? x?
For Fgup, R=0.259 248; for Fgop, R=1.104 454 [26].
Starting from

(28)
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2/3_Smax;i
e - Xi»

L

vt

we have

N 13
Ei:l Smax;i/ti

v= M) =vy-b'(x),

N TN =
21:1 ti2/3 2[’:1 ti2/3

with b'=N/(2¢”). Similarly, one may also write

N Nl 5

2 ax;i 2/3 2/3
Ex,:Z{ A vl b0 ]
i=1

i=1 i
= N(c+ b(x) +a(x)*), (29)

with

N
1 Smaxw’ :
ax, 2/3
c= _E 13— Vol P

Smax'i
> 2/3 1,213
[ 13~ Vol b,

N
1
a=~3 b,
LS b

i=1
Equation (29) can then be turned into
(X)e=c+b{x) +(a-1){(x), (30)

whose left-hand side may be replaced by R(x)>. One may
therefore solve for () via quadrature. Indeed, we have

bx\Vb*+4(R-a+1)c
)=
2(R-—a+1)

(31)

We take the negative solution. The ratio between () and the
value documented in Ref. [26] dictates the appropriate scale
\. Basically, N\ is the multiplicative factor for y in order to
transform it into Y =AY, the variable used for these theoret-
ical distributions. Once () is found, we may obtain the in-
dividual y; by

_ Smax;i
Xi= 73

l

~[vo-b" (015"

and obtain the histogram of \y.

When assuming F|, to be the correct distribution function
for x, we cannot use the ratio R to pin down the scale be-
cause (x)=0. However, the scale can still be obtained via

=) -()*=(?). Notice that y; comes out very
simply:

S nax:i
Xi= _;rll;l_;:’l - U0t1~2/3. (32)

2

We may then compute the scale factor N\ via
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=2
2o <X >FO (33)

= 5,
1 2” (Smax;i _ vot2/3>
=1\ 3 i
N<= ]

where <)?2>F0=1.150 39 can be taken from Ref. [26]. One
then obtains the pdf(Y=MAy) in a very straightforward
manner.

Under this protocol, with the scale factor N determined,
there will be no free parameters needed to fit our \y histo-
gram with the three standardized distributions. As a matter of
fact, one will just plot the theoretical curve from a standard-
ized distribution on top of the corresponding normalized his-
togram of N\y. To be quantitative about the quality of the
agreement, we employ the Kolmogorov-Smirnov (KS) statis-
tics test [44] to see whether or not we may regard the nu-
merically obtained distribution of Ay as generated from the
theoretical distribution assumed [45]. Using only the largest
cumulative deviation between two distributions, the KS test
provides the likelihood of two distributions (one obtained
experimentally and numerically, the other given theoreti-
cally) being identical. In this study, the largest cumulative
deviation and the likelihood of identity for each pair of dis-
tributions will be provided especially when comparing
among several pairs that are not easily discernible by
eye. Further, for a clear visual demonstration, we also plot
the cumulative difference as a function of the variable
considered.

Within the range 1.2<p/p.=< 1.6, we find that Fog gives
the best overlap with its corresponding normalized histo-
grams. As evidenced by the plots displaying the cumulative
difference between the numerical distribution obtained and
the theoretical distribution, histograms corresponding to the
F, distribution have fewer counts in the large value tail and
have more counts in the low value tail. This trend is reversed
for histograms corresponding to the Fgyg distribution. Typi-
cal examples are given in Figs. 7 and 8 for the cases of
0=0.3 and 6=0.6, respectively.

This behavior, however, turns out to be transient. As p
increases, the pdf of score fluctuations shifts from Fgog to
Fgug- And Fgyg remains the pdf that best fits its correspond-
ing histograms for even higher p values. Figures 9 and 10
show the overlaps and the cumulative difference between the
theoretical curves and their corresponding histograms at
p=0.5. As shown by the KS test results and the correspond-
ing plots, one may easily see that Fgyg agrees best with its
corresponding histograms. Figures 11 and 12 show similar
behavior for a higher p value (p=0.8).

In view of random matrix statistics, Fgyg and Fgog result
from matrices of different symmetry. Therefore the shift of
the pdf of y from Fgog to Fgug merits further investigation,
even though a direct connection between the DPRM (or se-
quence alignment) and random matrix statistics is not yet
found. There are several possibilities of such a pdf change to
occur: a fortuitous artifact (i.e., the distribution Fgop appears
to be a close fit only for a specific size and has no real
meaning), a phase transition, or a crossover phenomenon
[46] (meaning that Fgog is a critical fixed point whose criti-
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FIG. 7. (Color online) The pdf’s of x and the cumulative deviations between the numerical and theoretical distributions for p > p,_. but p
still close to p... The relevant parameters are as follows: lattice size L=600, p=0.0975, and gap penalty 6=0.3. With F, being the distribution
assumed, (a) displays a histogram of Ny (with N=3.4552) and a theoretical curve of the F distribution, while (d) displays the cumulative
difference between the numerical distribution and F,, with the largest absolute deviation being 1.05 X 1072; given by the KS statistics test, the
likelihood for F, to be the correct distribution is 5.69 X 107!, With Fgop being the distribution assumed, (b) displays a histogram of Ay (with
N=2.5680) and a theoretical curve of the Fgog distribution, while (e) displays the cumulative difference between the numerical distribution
and Fgop with the largest absolute deviation being 6.85 X 107#; given by the KS statistics test, the likelihood for Fgop to be the correct
distribution is 1.0. With Fgyg being the distribution assumed, (c) displays a histogram of Ny (with A=2.8914) and a theoretical curve of the
Fgug distribution, while (f) displays the cumulative difference between the numerical distribution and Fgyp with the largest absolute
deviation being 4.14 X 1073; given by the KS statistics test, the likelihood for Fgyg to be the correct distribution is 6.50 X 1072, The pdf’s are
obtaining by normalizing the histogram properly. In (d)—(f), regions with theoretical pdf values larger than 1073 are sandwiched by two
vertical dashed lines.
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FIG. 8. (Color online) The pdf’s of y and the cumulative deviations between the numerical and theoretical distributions for p>p. but p
still close to p,.. The relevant parameters are as follows: lattice size L=600, p=0.2093, and gap penalty 6=0.6. With F|, being the distribution
assumed, (a) displays a histogram of Ny (with A=2.8373) and a theoretical curve of the F, distribution, while (d) displays the cumulative
difference between the numerical distribution and F, with the largest absolute deviation being 1.14 X 1072; given by the KS statistics test, the
likelihood for F, to be the correct distribution is 1.03 X 10~'!, With Fqp being the distribution assumed, (b) displays a histogram of Ay (with
N=2.1109) and a theoretical curve of the Fgog distribution, while (e) displays the cumulative difference between the numerical distribution
and Fgop with the largest absolute deviation being 6.47 X 107#; given by the KS statistics test, the likelihood for Fgop to be the correct
distribution is 1.0. With Fgyg being the distribution assumed, (c) displays a histogram of Ny (with A=2.3798) and a theoretical curve of the
Fgug distribution, while (f) displays the cumulative difference between the numerical distribution and Fgyug with the largest absolute
deviation being 5.23 X 1073; given by the KS statistics test, the likelihood for Fgyg to be the correct distribution is 8.37 X 1073, The pdf’s are
obtaining by normalizing the histogram properly. In (d)—(f), regions with theoretical pdf values larger than 10~ are sandwiched by two
vertical dashed lines.
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FIG. 9. (Color online) The pdf’s of x and the cumulative deviations between the numerical and theoretical distributions for p > p,. with
p=0.5. Lattice size 600 and gap penalty 6=0.3 are used. With F|, being the distribution assumed, (a) displays a histogram of Ay (with \
=3.3867) and a theoretical curve of the F, distribution, while (d) displays the cumulative difference between the numerical distribution and
F, with the largest absolute deviation being 6.87 X 1073; given by the KS statistics test, the likelihood for F, to be the correct distribution
is 1.56 X 107, With Fgog being the distribution assumed, (b) displays a histogram of Ny (with A=2.5208) and a theoretical curve of the
Fgog distribution, while (e) displays the cumulative difference between the numerical distribution and Fgop with the largest absolute
deviation being 4.40 X 1073; given by the KS statistics test, the likelihood for Fgo to be the correct distribution is 4.18 X 1072, With Fgyg
being the distribution assumed, (c¢) displays a histogram of Ny (with A=2.8441) and a theoretical curve of the Fgyg distribution, while (f)
displays the cumulative difference between the numerical distribution and Fgyg with the largest absolute deviation being 9.32 X 107#; given
by the KS statistics test, the likelihood for Fgyg to be the correct distribution is 1.0. The pdf’s are obtaining by normalizing the histogram
propetly. In (d)—(f), regions with theoretical pdf values larger than 1073 are sandwiched by two vertical dashed lines.
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FIG. 10. (Color online) The pdf’s of y and the cumulative deviations between the numerical and theoretical distributions for p > p. with
p=0.5. Lattice size 600 and gap penalty §=0.6 are used. With F,, being the distribution assumed, (a) displays a histogram of \y (with A
=2.8373) and a theoretical curve of the F, distribution, while (d) displays the cumulative difference between the numerical distribution and
F,, with the largest absolute deviation being 7.48 X 1073; given by the KS statistics test, the likelihood for F;, to be the correct distribution
is 2.75X 107, With Fgog being the distribution assumed, (b) displays a histogram of Ny (with A=2.1110) and a theoretical curve of the
Fgog distribution, while (e) displays the cumulative difference between the numerical distribution and Fgop with the largest absolute
deviation being 4.26 X 1073; given by the KS statistics test, the likelihood for Fgop to be the correct distribution is 5.29 X 1072, With Fgyg
being the distribution assumed, (c) displays a histogram of Ny (with A=2.3801) and a theoretical curve of the Fgyg distribution, while (f)
displays the cumulative difference between the numerical distribution and Fyg with the largest absolute deviation being 1.22 X 1073; given
by the KS statistics test, the likelihood for Fgyg to be the correct distribution is 9.98 X 107!, The pdf’s are obtaining by normalizing the
histogram properly. In (d)—(f), regions with theoretical pdf values larger than 10~ are sandwiched by two vertical dashed lines.
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FIG. 11. (Color online) The pdf’s of y and the cumulative deviations between the numerical and theoretical distributions for p > p, with
p=0.8. Lattice size 600 and gap penalty 6=0.3 are used. With F, being the distribution assumed, (a) displays a histogram of Ay (with \
=3.9420) and a theoretical curve of the F distribution, while (d) displays the cumulative difference between the numerical distribution and
F,, with the largest absolute deviation being 6.84 X 1073; given by the KS statistics test, the likelihood for F to be the correct distribution
is 1.72X 107*. With Fgop being the distribution assumed, (b) displays a histogram of Ay (with A=2.9347) and a theoretical curve of the
Fgog distribution, while (e) displays the cumulative difference between the numerical distribution and Fgog with the largest absolute
deviation being 4.84 X 1073; given by the KS statistics test, the likelihood for Fgop to be the correct distribution is 1.83 X 1072, With Fgyg
being the distribution assumed, (c) displays a histogram of Ny (with A=3.3119) and a theoretical curve of the Fgyg distribution, while (f)
displays the cumulative difference between the numerical distribution and Fgyg with the largest absolute deviation being 5.87 X 107#; given
by the KS statistics test, the likelihood for Fgyg to be the correct distribution is 1.0. The pdf’s are obtaining by normalizing the histogram
properly. In (d)—(f), regions with theoretical pdf values larger than 1073 are sandwiched by two vertical dashed lines.
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FIG. 12. (Color online) The pdf’s of y and the cumulative deviations between the numerical and theoretical distributions for p > p. with
p=0.8. Lattice size 600 and gap penalty 5=0.6 are used. With F,, being the distribution assumed, (a) displays a histogram of Ay (with \
=3.2516) and a theoretical curve of the F, distribution, while (d) displays the cumulative difference between the numerical distribution and
F,, with the largest absolute deviation being 7.07 X 1073; given by the KS statistics test, the likelihood for F to be the correct distribution
is 9.09 X 107>, With Fgop being the distribution assumed, (b) displays a histogram of Ay (with A=2.4750) and a theoretical curve of the
Fgog distribution, while (e) displays the cumulative difference between the numerical distribution and Fgog with the largest absolute
deviation being 4.36 X 1073; given by the KS statistics test, the likelihood for Fgqp to be the correct distribution is 4.42 X 1072, With Fgug
being the distribution assumed, (c) displays a histogram of N\ (with A=2.7923) and a theoretical curve of the Fgyg distribution, while (f)
displays the cumulative difference between the numerical distribution and Fgg with the largest absolute deviation being 8.70 X 107#; given
by the KS statistics test, the likelihood for Fgyg to be the correct distribution is 1.0. The pdf’s are obtaining by normalizing the histogram
properly. In (d)—(f), regions with theoretical pdf values larger than 1073 are sandwiched by two vertical dashed lines.
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FIG. 13. (Color online) The gradual degradation (improvement)
of the agreement between the pdf of y and Fgop (Fgug) for &
=0.3. System sizes of L=1000 (solid line), 1600 (dashed line), 2560
(dot-dashed line), and 4096 (long-dashed line) are studied with [p
—p L)1/ p(L)=0.1. Part (a) displays how the amplitude of cumu-
lative difference between the numerical pdf and Fgop gradually
increases with size; part (b) displays how this amplitude decreases
with size for Fgyg. In part (a), the gradual degradation leads to a
decrease of the likelihood value (from 100.0 to 87.3 %); in part (b),
the gradual improvement leads to an increase of the likelihood
value (from 2.7 to 34.0 %).

cal surface is quite close to or even includes the percolation
transition point).

The first possibility is unlikely since over a wide range of
system size studied at p not too far away from p.(L), Fgog
appears—among the three possible theoretical
distributions—to agree best with its corresponding histo-
grams when using the Kolmogorov-Smirnov statistics test.
The other two possibilites, a phase transition or a crossover,
are more likely. As we point out earlier in this paper, when p
just exceeds p.(L), the highest score path may start with a
growth of score, followed by many large scale downs and
ups in cumulative score, and finally reach the boundary re-
gion of the alignment lattice with highest cumulative score.
In this case, when viewed at r=L (half the maximum path
length), the statistical averages of score change along the
forward and backward directions appear similar. This may
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FIG. 14. (Color online) The gradual degradation (improvement)
of the agreement between the pdf of y and Fgop (Fgug) for &
=0.6. System sizes of L=1000 (solid line), 1600 (dashed line), 2560
(dot-dashed line), and 4096 (long-dashed line) are studied with [p
—p(L)]/ p(L)=0.1. Part (a) displays how the amplitude of cumu-
lative difference between the numerical pdf and Fgog gradually
increases with size; part (b) displays how this amplitude decreases
with size for Fgug. In part (a), the gradual degradation leads to a
decrease of the likelihood value (from 100.0 to 92.0 %); in part (b),
the gradual improvement leads to an increase of the likelihood
value (from 7.80 to 27.0 %).

resemble the initial condition of flat substrate in the PNG
growth [26]. When p (the percentage of positive score
bonds) increases, it is expected that along the highest scoring
path the number of large scale downs and ups in score will
diminish. To investigate whether or not this effect leads to a
phase transition (and consequently a change of pdf of ), we
looked for singular behavior of observables, such as I1(p),
(Smax(P))o» and their derivatives, in the p range where the
shift from Fgop to Fgyg takes place. No singular behavior
was found.

This observation suggests a different explanation, the
crossover phenomenon which turns out to match our obser-
vation well. As shown by the plots in Figs. 13 and 14 dis-
playing the cumulative deviations for larger system sizes, we
see a mild degradation (improvement) of the agreement be-
tween the pdf of y and Fgop (Fgup) as the system size in-
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FIG. 15. (Color online) The score pdf for (a) p<p,, (b) p>p.
but close to p,, and (¢) p much larger than p.. The lattice size used
here is L=600 and the gap penalty used is 6=0.4. The p values are
(a) 0.077, (b) 0.1678, and (c) 0.80. For 6=0.4, the critical p value at
infinite size is p,=0.107 while the finite size p.(L=600)=0.12. The
effective path lengths 7.5 are 1168.2 for p=0.1678 (b), and 1196.6
for p=0.8 (c). The parameter v takes the values 0.046 88 and
0.269 85 respectively for (b) and (c).

creases. For example, for 6=0.3, when the system size in-
creases from L=1000 to L=4096, at [p—p.(L)]/p.(L)=0.1,
the likelihood of Fgog decreases from 1.0 to 0.7193 while
that of Fgyg increases from 0.032 to 0.3942; for 6=0.6,
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FIG. 16. (Color online) The score pdf for p=0.1204 [greater
than but very close to p.(L=600)=0.12]. The lattice size used here
is L=600 and the gap penalty used is 6=0.4. As one may see, the
score pdf is well fitted by the Poisson distribution with parameters
A1=0.96, A,=0.5712, and pu=11.46.

when the system size increases from L=1000 to L=4096, the
likelihood of Fgog decreases from 1.0 to 0.92 while that of
Fug increases from 0.078 to 0.27. This is consistent with a
typical crossover scenario. There exists a stable fixed point
(Fgup) that can be approached by simply taking a large p
> p... Further, there are two or more critical fixed points. The
first one, corresponding to the percolation transition point,
has two or more relevant scaling fields [47], with one of
them flowing (under the coarse-graining procedure of the
renormalization group) towards the large p fixed point and
the other flowing to the second critical fixed point (Fgog).
Near the percolation transition point, if the initial system
parameters happen to be very close to but not on the critical
surface of the second critical fixed point, the effective system
parameters under the coarse-graining procedures will first
flow to the vicinity of the second critical fixed point but
eventually flow into the global stable fixed point (Fgyg).
Note that when system size is small, only a few coarse grain-
ing steps can be made without encountering the effect of the
system boundary. But as the system size grow larger, more
such steps can be performed and will bring the system to the
global stable fixed point eventually.

It is worth noting that L=4096 is considerably larger than
the number of amino acid residues in a typical protein.
Therefore even though the accuracy of the distribution Fgog
will eventually degrade if the system parameters are not right
on its corresponding critical surface, for alignments of prac-
tical sizes Fgop does represent the distribution of y when the
effective p value of the system is close to p.(L). It is also
interesting to note that in a recent study [30] of the Bernoulli
matching (BM) problem, Fgqp is the only distribution that is
discussed in Ref. [26] but not realizable by the BM model.

D. Score distribution

In real application of global alignment, it is possible that
the acutal length is not very large and therefore the score
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TABLE III. The asymptotic expansion coefficients for u(x<—1)=\-x/2[1+37 (a3;/x*)].

—as ae —dy ap —dais ag —dy
l ﬁ 10657 13912277 8045883943 14518451390349 18847128706420641
8 128 1024 32768 262144 4194304 33554432

statistics cannot be inferred accurately just from the distribu-
tion of y. Therefore it might serve a practical purpose if one
can characterize the score distribution with modest lattice
sizes such as those used in our simulations. This issue is
investigated only briefly and empirically in this section.

We found that for p<p.(L) the probability density of the
maximum score exhibits an exponential tail generally fittable
by the form

y=exp[- (x = x)C]. (34)

For p>p (L), the majority of events have their path lengths
comparable to 2L. Therefore one may imagine that there is
an effective path length f. (with 7.4~ 2L for very large p
values), and the score distribution is given by

Foar(8) = dF(N(S = vt )/1)/dS (35)

with F being the distribution function of . As we have dem-
onstrated in Figs. 7 and 8, for p greater than but close to p,,
F(X) is best described by Fgop. For p much greater than p,,
we show—in Figs. 9-12—that F is best described by Fgyg.
The crossover p value for the score pdf, being similar to that
of the score fluctuations, is generally dependent on 6.

The effective length 7. can be determined as follows. Let
us define x=1!f}. We then have

N

o {%—vﬁ} =40,

1

which then leads to the following cubic equation:

v

X =0
that can be solved by elementary methods. The parameters v
and A are obtained via the method proposed in the previous
subsection and the value of () is taken from Ref. [26]. As
expected, f.; found that this way is very close to the
ensemble-averaged path length Ef;lt,-/ N.

Figure 15 shows all three possible cases using lattice size
600 and 6=0.4. In part (a), we see that the tail of the pdf of
S for (p=0.077) <p (L) is well fitted by an exponential. The
constants associated with the fitted line are C=2.2466 and
Xp=5.190. In part (b), we see that for p>p.(L) but close to
p. (p=0.1678), the pdf of S is well fitted by Fgop(A(S
—vte) /1) In part (c), we see that the score distribution for
large p value (p=0.8 here) indeed follows the Tracy-Widom
GUE distribution Fgup(N(S—vtg)/157).

To characterize the alignment score statistics using these
known distributions, however, one will need to have a good

estimate of the parameters v and . (or C and x;) for a given
6. Fortunately, using methods proposed in the previous sub-
section, these values can be determined with a relatively
small number of simulations provided that one knows which
theoretical distribution to use. This information presumably
can be precomputed via simulations over various ranges of p
for different gap costs.

Finally, let us note that for p very close to p.(L) the dis-
tribution of the maximum score is well-fitted by the Poisson
distribution with the form

A ~_ o~
fpar($) = Thl[e(l“ pHDSGSH ], (36)
V27

where S=A,5+A, represents the appropriately scaled vari-
able and u is the expectation value of (S). An example is
shown in Fig. 16. Although at this point we are not able to
predict the associated parameters (w,A;,A,) of the Poisson
distribution from scoring parameters used, we speculate that
the Poisson distribution is the correct pdf for scores right at
the critical point. This speculation is supported by the fact
that the score pdf is no longer fittable by the Poisson distri-
bution when p increases further where it first turns into Fgog
and then into Fgyg.

V. SUMMARY AND OUTLOOK

In this paper we investigate the score statistics of global
sequence alignment using a variant DPRM model. We intro-
duce a parameter p, the probability of having a positive sub-
stitution score at each diagonal bond, to mimic different lev-
els of compositional divergence between two compared
sequences. The larger the p value, the more likely it is for the
highest score point to be near the boundary of the alignment
lattice, similar to a percolating system.

~0.2 1 1 1 1 1 1
-8 -6 -4 -2 0 2 4 6

X

FIG. 17. (Color online) Numerical solution of the Painlevé II
equation.
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By using finite-size scaling on I1(p,L), the probability of
percolation at fraction p and size L, we obtain p,., the critical
p at infinite size. We also identify the & (gap penalty) depen-
dence of the finite size exponent v. In the context of perco-
lating clusters, the correlation length ¢ may be regarded as
the largest cluster size (the path length from the origin to the
highest score point in the lattice). We also obtain the scaling
function for the average maximum score (S). The critical
length ¢, obtained in this analysis represents the length within
which the score only increases with length, and is therefore
smaller than £ We reason and verify that indeed (S), has a
weaker finite-size effect than I1(p,L). The dependence of the
linear growth velocity v on o near p, is also examined and
documented.

To investigate which of the three distributions—the limit-
ing distribution F, the Tracy-Widom Fgog, or the Tracy-
Widom Fgyg—our random variable y follows, we perform
an extensive numerical simulation using lattices of linear
size up to L=4096. Our finding suggests that Fgyg is the
global stable fixed point for large p while Fgop is a critical
fixed point that characterizes well the score statistics when
0<[p-pL)])/p(L)<1. Upon increasing p, the change of
pdf of x from Fgog to Fgyg is most likely a crossover phe-
nomena. That is, unless the system parameters are right on
the critical surface of FgqE, the pdf of x will evolve towards
Fgug upon the renormalization group flow. Our study sug-
gests that the percolation transition point is quite close to the
critical surface of Fgop. However, whether the critical sur-
face of Fgop intersects with the p-o phase plane or not re-
mains to be studied.

In general it is not known a priori how to extract the
variable y from the score and how to scale y to Y, the vari-
able used for these three standardized distributions. We de-
velop a method to extract the y variable from each event
accurately and with the correct scale factor N simultaneously
determined. To compare with the theoretical predictions, we
need an accurate numerical solution to the Painlevé II equa-
tion. The prerequisite for this task is to find an initial point x,,
with u(xy) and u’(x,) accurately specified. As shown in the
Appendix, we accomplish this requirement by a systematic
asymptotic expansion of u(x) when x takes negative value
but |x|>1.

As a cautionary note, we must point out that a systematic
application of our theoretical analysis to score statistics is
hindered by a few issues. First, the dependence of parameters
such as v.g and 7.5 on gap cost are not yet known analyti-
cally; second, the functional realtion between p,. and the gap
costs is also not yet known analytically. Fortunately, it is
possible to obtain those quantities on a set of selected gap
costs using numerical means. This heuristic approach was
actually taken in the alignment statistics of BLAST [48]. Once
the effective parameters are given, the score statistics follows
Eq. (35). The procedure outlined in Sec. IV D allows one to
extract the effective parameters using numerical simulations.
Through this procedure, the possiblity to characterize the
score statistics of modest sequence lengths is illustrated.

Empirically, we find that when p <p,, the pdf of S has an
exponential tail. When p>p.(L) and even for the modest
size of L=600, the scores—after proper subtraction and
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rescaling—follow the distribution function of ). That is to
say, when p is slightly greater than p.(L), the score distribu-
tion follows Fgog; when p is much larger than p,, the score
distribution follows Fgyg. For p very close to the transition
point p.(L), we find that the score distribution can be well
fitted by the Poisson distribution, which we speculate is the
correct score pdf at the critical point.

The connection between random matrix statistics and
alignment score statistics is interesting and perhaps deserves
more investigation. For example, it is not obvious how the
symmetry assumed by a certain random matrix ensemble is
realized in the sequence alignment problem. It will be inter-
esting to see if any other features of random matrix statistics
find their analogs in sequence alignment. For example, it
remains to be seen whether the level spacing statistics (char-
acterized by Wigner-Dyson distribution) and/or the universal
spectral rigidity have their counterparts in sequence align-
ment.
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APPENDIX

To obtain theoretical distribution curves, we need an ac-
curate numerical solution to the Painlevé II equation (12).
This appendix shows how we may obtain an accurate u(x)
for x<<0.

The standard method to expand a function at large argu-
ment is the asymptotic expansion. Our starting point is to
write u(x) as the product of a power series of (1/x) and the
asymptotic solution of u(x) at x— —o°:

-Xx - ap I ke
RSP e P ) PR S
2 i x€ 2 e (_ x)€ 172
(A1)

We will show that only a subset of {a;} (or equivalently {k.})
can be nonzero.

Our strategy is to substitute the expression (A1) into both
sides of Eq. (12). First we note that

1
© <€2— Z)k(

=—=(- x)_3/2 + 2 (- x)€+3/2

MXX

1
—
442 =1

has a leading order term proportional to (—x)~*2. This then
demands the cancellation, on the right-hand side of Eq. (12),
of terms (—x)* whose power « is greater than —3/2. Now the
quantity 2u>+xu can be written as
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—x\32 ~
2u3+xu=2<7) +3(- x)E )e 7
o 2 © 3
- X kg k{
+6\ —| > —5 | 2|2 —ms
2 [€=1 _x)€ 1/2] |:€=1 (_x)€ 1/2
- X - k(
+x\/ +x2 2-02 —m
2 )€ 7= e (_ x)(i 172

xS ke P e k[
+6 le(_x)g—uz] +2|:€§1 —x)i_1/2:| '

Note that the leading powers from the second and third terms
are (-x)™"? and (-x)73?, respectively. Demanding that the
(=x)"? term have zero coefficient, we find immediately that
k;=0. Upon setting k;=0, we see that the second and third
terms of Eq. (A2) have leading powers (—x)™>? and
(=x)™, respectively. Demanding that the coefficient of
(=x)~"2 be zero immediately leads to k,=0. Since the left
hand side of the Painlevé II equation does contain an
(=x)73? term, ky# 0. This then tells us that the sum over k,
should start with €=3. The second derivative of
ky/(=x)>"2 leads to (—x)™? and this is the next leading
power on the right hand side of Eq. (12). Similarly, when
starting with €=3, the second and third terms of Eq. (A2)
have leading powers (—x)~'? and (-x)~'>2, respectively. Re-
quiring the coefficients of the (—x)™'? term and the (—x)~""?
term to be zero, we find immediately that ky;=ks=0. It is then
a simple matter to use the method of induction to show that
kz¢_»=ks¢_1=0. For the sake of completeness, we will per-
form such an induction analysis here. Assume that the expan-
sion of u(x) up to €=3j with j=2 is given by

- X k ¢
u(x) = \/_"'2 33€ mnt E e ;- (A3)
2 5 (=x) 0=3j+1 )
We want to show that this implies that
Jj+1 0
k3¢ ke
W=\ 5+ 2 w2 Corm
=1 (=x 0=3(j+1)+1 x)
(A4)

By substituting Eq. (A3) into Eq. (A2), we have
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j 3
k
3 _ 3¢
2u +xu—2< E )3€ 1/2)

J 2] =
—-X k3¢ ) kg
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( 2 = (_ x)3€—1/2 [€=3j+1 (_ x)€—1/2

PRI 5ok |
- 3¢ ¢
—+2 =l 2 s

2 o (_ x)3€ 1/2) Pyt (_ x)( 172

- X / k3€
+€§:1 ( x)3€ 12

N S T
La,-ﬂ ) “2]

The second derivative of u(x) contains, for powers larger
than —3-3/2, only {(-x)"3¢=¥2},_. That is, there is no term
with (=x)=3*12 and no term with (-x)~%~"2. Checking the
right-hand side of Eq. (A5), we see that the first and the fifth
terms cannot possibly generate terms with these powers.
When j=2, the third and the fourth terms do not contain the
powers —3j+1/2 and —3j+1/2 either. The only terms that
matter are the second and the sixth terms. Demanding that
the (—x)™*!" term have zero coefficient, we see that k3,
=0. Similarly, demanding that (—x)~*~2 have zero coeffi-
cient, we obtain k3;,,=0. Therefore we have shown by in-
duction that the asymptotic expansion of u(x) with x<<0 and
|x|>0 has the following form:

u(x) = \/%x|:1+€§:=1 %:|.

The coefficients up to order (—x)~*"?> were then computed
using MATHEMATICA and tabulated in Table III. This
asymptotic expansion yields accurate values for u(-8) and
u,(—8), which then allows for numerical integration of u(x)
towards positive x. Figure 17 shows the numerical solution
obtained through this approach. This numerical solution al-
lows us to calculate g(x) and f(x) which are needed for com-
puting the theoretical distribution functions of .
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